A Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements

Authors

  • M. Danesh Buein Zahra Technical University, Buein Zahra, Ghazvin, Iran.
  • S. Danesh Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:

This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where the variation around the mean is not determinate. However, to provide unbiased and precise estimations, the predictions are required to be correct on average and the spread of date be specified. To address this issue, we proposed a method based on the fuzzy inference system, and genetic and linear programming algorithms. We consider the crisp inputs and the symmetrical triangular fuzzy output. The proposed algorithm is applied to fit the fuzzy regression model. In addition, we apply a simulation example and a practical example in the field of machining process to assess the performance of the proposed method in dealing with practical problems in which the output variables have the nature of uncertainty and impression. Finally, we compare the performance of the suggested method with other methods. Based on the examples, the proposed method is verified for prediction. The results show that the proposed method reduces the error values to a minimum level and is more accurate than the Linear Programming (LP) and fuzzy weights with linear programming (FWLP) methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

full text

CREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION

In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...

full text

A Fuzzy Algorithm for Parameter Estimation of a Superheater System

The Fuzzy State Space algorithm (FSSA) is the main feature in the development of the Fuzzy State Space Model (FSSM) for solving inverse problems in multivariable dynamic systems. Traditionally, such inverse problems have been addressed by repeated simulation of forward problems, which requires excessive computer time and thus can be very costly. In the formulation of the FSSA, the uncertain val...

full text

A New Method for Parameter Estimation with Uncertain Data

We formulate and solve a new parameter estimation problem in the presence of data uncertainties. The new method is suitable when a-priori bounds on the uncertain data are available, and its solution leads to more meaningful results especially when compared with other methods such as total least-squares and robust estimation. Its superior performance is due to the fact that the new method guaran...

full text

Two-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data

‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  525- 533

publication date 2020-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023